18 research outputs found

    Is Grad-CAM Explainable in Medical Images?

    Full text link
    Explainable Deep Learning has gained significant attention in the field of artificial intelligence (AI), particularly in domains such as medical imaging, where accurate and interpretable machine learning models are crucial for effective diagnosis and treatment planning. Grad-CAM is a baseline that highlights the most critical regions of an image used in a deep learning model's decision-making process, increasing interpretability and trust in the results. It is applied in many computer vision (CV) tasks such as classification and explanation. This study explores the principles of Explainable Deep Learning and its relevance to medical imaging, discusses various explainability techniques and their limitations, and examines medical imaging applications of Grad-CAM. The findings highlight the potential of Explainable Deep Learning and Grad-CAM in improving the accuracy and interpretability of deep learning models in medical imaging. The code is available in (will be available)

    Neural network based country wise risk prediction of COVID-19

    Get PDF
    The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the uncertain nature. Here, we propose a shallow long short-term memory (LSTM) based neural network to predict the risk category of a country. We have used a Bayesian optimization framework to optimize and automatically design country-specific networks. The results show that the proposed pipeline outperforms state-of-the-art methods for data of 180 countries and can be a useful tool for such risk categorization. We have also experimented with the trend data and weather data combined for the prediction. The outcome shows that the weather does not have a significant role. The tool can be used to predict long-duration outbreak of such an epidemic such that we can take preventive steps earlie

    Video trajectory analysis using unsupervised clustering and multi-criteria ranking

    Get PDF
    Surveillance camera usage has increased significantly for visual surveillance. Manual analysis of large video data recorded by cameras may not be feasible on a larger scale. In various applications, deep learning-guided supervised systems are used to track and identify unusual patterns. However, such systems depend on learning which may not be possible. Unsupervised methods relay on suitable features and demand cluster analysis by experts. In this paper, we propose an unsupervised trajectory clustering method referred to as t-Cluster. Our proposed method prepares indexes of object trajectories by fusing high-level interpretable features such as origin, destination, path, and deviation. Next, the clusters are fused using multi-criteria decision making and trajectories are ranked accordingly. The method is able to place abnormal patterns on the top of the list. We have evaluated our algorithm and compared it against competent baseline trajectory clustering methods applied to videos taken from publicly available benchmark datasets. We have obtained higher clustering accuracies on public datasets with significantly lesser computation overhead

    Person Re-identification in Videos by Analyzing Spatio-temporal Tubes

    Get PDF
    Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery usually contains image sequences for video re-identification applications. However, such a process is time consuming as video re-identification involves carrying out the matching process multiple times. In this paper, we propose a new method that extracts spatio-temporal frame sequences or tubes of moving persons and performs the re-identification in quick time. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization technique. Finally, a hierarchical re-identification framework is proposed and used to rank the output tubes. Experiments with publicly available video re-identification datasets reveal that our framework is better than existing methods. It ranks the tubes with an average increase in the CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Re-identification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community

    Learning Nanoscale Motion Patterns of Vesicles in Living Cells

    Get PDF
    Detecting and analyzing nanoscale motion patterns of vesicles, smaller than the microscope resolution (~250 nm), inside living biological cells is a challenging problem. State-of-the-art CV approaches based on detection, tracking, optical flow or deep learning perform poorly for this problem. We propose an integrative approach, built upon physics based simulations, nanoscopy algorithms, and shallow residual attention network to make it possible for the first time to analysis sub-resolution motion patterns in vesicles that may also be of sub-resolution diameter. Our results show state-of-the-art performance, 89% validation accuracy on simulated dataset and 82% testing accuracy on an experimental dataset of living heart muscle cells imaged under three different pathological conditions. We demonstrate automated analysis of the motion states and changed in them for over 9000 vesicles. Such analysis will enable large scale biological studies of vesicle transport and interaction in living cells in the future

    Virtual labeling of mitochondria in living cells using correlative imaging and physics-guided deep learning

    Get PDF
    Mitochondria play a crucial role in cellular metabolism. This paper presents a novel method to visualize mitochondria in living cells without the use of fluorescent markers. We propose a physics-guided deep learning approach for obtaining virtually labeled micrographs of mitochondria from bright-field images. We integrate a microscope’s point spread function in the learning of an adversarial neural network for improving virtual labeling. We show results (average Pearson correlation 0.86) significantly better than what was achieved by state-of-the-art (0.71) for virtual labeling of mitochondria. We also provide new insights into the virtual labeling problem and suggest additional metrics for quality assessment. The results show that our virtual labeling approach is a powerful way of segmenting and tracking individual mitochondria in bright-field images, results previously achievable only for fluorescently labeled mitochondria

    Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis

    Get PDF
    Automatic grading of retinal blood vessels from fundus image can be a useful tool for diagnosis, planning and treatment of eye. Automatic diagnosis of retinal images for early detection of glaucoma, stroke, and blindness is emerging in intelligent health care system. The method primarily depends on various abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture, and entropies. The development of an automated screening system based on vessel width, tortuosity, and vessel branching are also used for grading. However, the automated method that directly can come to a decision by taking the fundus images got less attention. Detecting eye problems based on the tortuosity of the vessel from fundus images is a complicated task for opthalmologists. So automated grading algorithm using deep learning can be most valuable for grading retinal health. The aim of this work is to develop an automatic computer aided diagnosis system to solve the problem. This work approaches to achieve an automatic grading method that is opted using Convolutional Neural Network (CNN) model. In this work we have studied the state-of-the-art machine learning algorithms and proposed an attention network which can grade retinal images. The proposed method is validated on a public dataset EIARG1, which is only publicly available dataset for such task as per our knowledge

    Automatic question generation and answer assessment: a survey

    Get PDF
    Learning through the internet becomes popular that facilitates learners to learn anything, anytime, anywhere from the web resources. Assessment is most important in any learning system. An assessment system can find the self-learning gaps of learners and improve the progress of learning. The manual question generation takes much time and labor. Therefore, automatic question generation from learning resources is the primary task of an automated assessment system. This paper presents a survey of automatic question generation and assessment strategies from textual and pictorial learning resources. The purpose of this survey is to summarize the state-of-the-art techniques for generating questions and evaluating their answers automatically
    corecore